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ABSTRACT Electromagnetic inverse scattering (EMIS) is uniquely positioned among many inversion meth-
ods because it enables to image the scene in a contactless, quantitative and super-resolution way. Although
many EMIS approaches have been proposed to date, they usually suffer from two important challenges,
i.e., time-consuming data acquisition and computationally -prohibitive data post processing, especially for
large-scale objects with high and even moderate contrasts. To tackle the challenges, we here propose a
framework of intelligent EMIS with the aid of deep learning techniques and information metasurfaces,
enabling to the efficient data acquisition and instant data processing in a smart way. Towards this goal,
as illustrative examples, we considerably extend the canonical contrast source inversion (CSI) algorithm, a
canonical EMIS method by updating the contrast via the generative adversarial network (GAN), an unsu-
pervised deep learning approach, leading to a novel physics-informed unsupervised deep learning method
for EMIS, referred to as CSI-GAN in short. Compared with existing deep learning solutions for EMIS, our
method relies on the supervision of physical law instead of the labeled training dataset, beating the bottleneck
arising from the collection of labeled training datasets. Furthermore, we propose a scheme of adaptive data
acquisition with the use of information metasurface in a cost-efficiency way, remarkably reducing the number
of measurements and thus speeding up the data acquisition but maintaining the reconstruction’s quality.
Illustrative examples are provided to demonstrate the performance gain in terms of reconstruction quality,
showing the promising potentials for providing the intelligent scheme for the EMIS problems.

INDEX TERMS MTT 70th Anniversary Special Issue, electromagnetic inverse scattering (EMIS), contrast
source inversion, physics-informed neural network (PINN), unsupervised deep learning method, information
metasurface.

I. INTRODUCTION
Electromagnetic inverse scattering (EMIS) has been shown a
powerful contactless super-resolution examination technique,
which enables us to “see” clearly the internal structure
of scene [1], and has found its valuable applications in
nondestructive evaluation [2], [3], [4], geological exploration
[5], [6], [7], cancer detection [8], [9], [10], and security check

[11], [12], to name a few. By now, various inverse scattering
methods have been developed, such as contrast source
inversion (CSI) [13], [14], [15], [16], distorted Born/Rytov
iterative methods [17], [18], and stochastic methods [19], [20],
[21], etc. However, they usually suffer from two formidable
challenges, i.e., time-consuming data acquisition and
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computationally prohibitive data post processing, especially
for large-scale objects with high and even moderate contrasts.
To deal with the challenges, here we propose a concept of
intelligent electromagnetic inverse scattering by exploring the
deep learning techniques for the adaptive data postprocessing
on digital level and the information metaurface for the
adaptive data acquisition on physical level.

Technically, the aforementioned EMIS methods are devel-
oped in the context of data postprocessing. Parallelly, the deep
learning techniques are gained ever-increasingly attentions
mainly in the digital world since the huge success of artificial
intelligence (AI) board-game-Go program (AlphaGo) [22],
such as in the areas of speech recognition [23], [24], [25],
image recognition [26], [27], [28], automatic translation [29],
[30], [31], image editing [32], [33], [34], [35], robot control
[36], [37], [38], etc. Naturally, the deep learning techniques
can be explored to solve the difficulties arising in the current
EMIS algorithms. By now, various deep-learning-based EMIS
methods have been proposed for pixel-based inverse scatter-
ing imaging [39], [40]. In [41], a U-Net structure [42] was
used to learn the mapping from the electromagnetic input data
to the pixelated contrast images, and three schemes to prepro-
cess the input data were discussed: raw measured data, back
propagation (BP), and dominant current schemes, where the
latter two schemes were proved able to reconstruct satisfac-
tory images. The effectiveness of the U-Net structure was also
verified in the image reconstruction from multiple scattered
light measurements [43], where it is proved that modified
contrast is more suitable to be the input of the U-Net for
full-wave EMIS problems [44]. In [45], three different input
schemes to U-Net for solving EMIS with phaseless data (PD)
were proposed and discussed, i.e., the raw phaseless measured
field data, the dominant induced currents by the Levenberg-
Marquardt method, and the contrast source inversion method,
where except inputting raw PD, the other two input schemes
both performed robust and accurate imaging results. In or-
der to improve the imaging quality in EMIS when directly
inputting the raw field data to the deep learning networks,
data compression and preprocessing tricks were introduced
by a pretrained autoencoder [46] or semiphysics-driven subnet
[47] to reduce mapping workloads of the inverse deep learning
networks.

Besides the U-Net, some generative adversarial networks
(GANs), which are instinctively suitable for the imaging gen-
eration tasks, also prove to work well for electromagnetic
pixelated imaging. In [48], GAN was trained to generate vir-
tual dielectric anatomical breast phantoms that were similar to
real human breasts, which realized data expansion for further
researches. In the forward electromagnetic scattering prob-
lem, a framework of GAN, named pix2pix [49], was used
to immediately predict the graphical induced currents when
given permittivity contrast and incident field [50]. In [51], a
complex-valued pix2pix was proposed for EMIS, in which a
generator composed of multi-layer complex-valued convolu-
tional neural network was trained to learn the mapping from

the BP result to the contrast images. Although the generator
was complex-valued, the researchers in [51] admitted that
their proposed method still lack interpretability, which is a
common problem for the deep learning schemes. Further, in
[52], an attention-assisted pix2pix with spatial attention mech-
anism was used to reconstruct scatterers including perfectly
electric conductor (PEC) and dielectric objects, which is the
first time that the learning-based approach was introduced to
solve the EMIS with mixed boundary conditions.

The cost for lack of interpretability is that the training of
deep learning networks is a black-box process and a great
deal of training data are needed for a satisfactory result. In
order to reduce the dependence on training data and increase
the generalization ability, physical priori knowledge should
be manually added into the design of deep learning schemes.
Recently, some physics-informed neural networks driven by
partial differential equations have been rapidly developed,
which have shown great effectiveness in solving the classic
physical problems including fluid mechanics and quantum
mechanics [53]. For the inverse scattering, inspired by the
similarities between the iterative optimization method of non-
linear inverse scattering and the ANN architecture, a cascade
of end-to-end complex-valued residual convolutional neural
network (CNN) modules, termed DeepNIS, was proposed in
our previous work [54], in which the generalization ability
was verified by testing with the experimental data. Another
physics-informed work for EMIS was demonstrated in [55],
where a cascaded end-to-end CNN was designed to hierarchi-
cally fit the induced current from scattered fields by setting
multiple training labels in the intermediate layers. As a result,
the nonlinearity of the mapping relation that the proposed
CNN needed to fit was greatly reduced, which was verified
by numerous numerical and experimental tests [55].

Besides these physics-informed end-to-end deep learning
networks, the deep learning frameworks can also be iterative
by integrated with iterative physical optimization operators,
which may not be as fast as the end-to-end frameworks, but
the inversion process can be relatively more controllable and
interpretable. Such iterative deep learning frameworks mainly
work by two sequential stages: offline training and online op-
timization. As a classical case presented in [56], in the offline
training stage, Guo et al. trained two kinds of neural networks
named “FWD SOLVER” and “subnetwork” in ISP SOLVER
to surrogate the numerical forward solver [57] and cascaded
inversion solver respectively. In the online optimization stage,
the residual between the observed data and simulated data
was input to the subnetwork to guide the iterative update of
model reconstruction. Another iterative deep learning frame-
work was introduced in [58], where a pretrained supervised
deep learning network was embedded in a CSI method to
iteratively map the signal subspace of the contrast source to
an estimate of the true contrast source.

Although the prior physical knowledge was introduced to
increase the generalization by these abovementioned attempts,
it was not enough to get rid of paired training data. In other
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words, these deep learning schemes are still supervised meth-
ods, which need to collect the scattered fields for thousands of
training samples. Both simulation and experiment methods for
scattered field collection are time consuming and expensive,
especially for experiments.

In our daily research in iterative optimization methods [1]
for EMIS of intricate scatterers, we found that if the con-
trast image was initialized as a shape topologically similar
to the ground truth, the iterative methods could eventually
converge to a satisfactory result. On the contrary, if the con-
trast image was not well initialized, such as initialized by a
fuzzy BP result, the iterative methods were easy to generate
blurry results. The main reason for this phenomenon is that
the strong nonlinearity and ill-posedness of EMIS make the
iterative methods trap in local optimum, which is hard to
escape without outside assistances, such as revision with topo-
logical features. For solving the EMIS problems, we realized
that respecting physical formulas is the inherent character-
istic of the iterative optimization methods while adding the
topological features is the advantages of deep learning meth-
ods especially GANs. Inspired by this idea, in this article,
we propose a physics-informed unsupervised deep learning
framework for solving EMIS, where a whole iterative opti-
mization method is directly integrated in the framework to
provide the physical priori knowledge, while an unsupervised
GAN with physical loss function is trained to add the topo-
logical features into the optimization process of EMIS. In
order to demonstrate the procedure and effectiveness of the
proposed framework, we choose CSI as the example of iter-
ative optimization backbones integrated in our deep learning
framework, which is termed CSI-GAN in this article. Ben-
efitting from the abundant physical mechanism brought by
CSI, the measured scattered fields in training dataset are no
longer needed and the contrast images alone are enough to
train our CSI-GAN. Time-consuming and laborious full-wave
simulations for the training-data preparation could be skipped,
which lowers the threshold for the usage of the deep learning
methods in the EMIS problems. Several simulation tests are
conducted to fully vindicate the effectiveness of our proposed
framework. Nevertheless, it must be noted that the unsuper-
vised framework of CSI-GAN is accompanied by higher costs
of computational resources and imaging time compared with
the supervised deep learning frameworks. From the user’s per-
spective, choosing the supervised or unsupervised framework
depends on whether the paired training samples are easy to be
collected or not, or the user prefers to save time on the data
preparation process or the imaging process.

For the data acquisition of EMIS, there are three schemes of
measurement configurations: the real aperture (RA), synthetic
aperture (SA), and coding aperture (CA). The RA method uses
a great number of elements in a large aperture, which is flex-
ible in controlling the measurement modes, but suffers from
its big size, heavy weight, high power, and expensive price
of hardware. On the contrary, the SA method works with the
mechanical movement of a single sensor to form virtually a
large-size aperture in digital world. Apparently, the SA system

has relatively low hardware cost compared to the RA sys-
tem; however, it is inefficient in data acquisition besides the
relatively low signal-to-noise ratio (SNR) due to the mechan-
ical movement of the single sensor. The CA method relies on
the theory of compressive sensing [59], in which a sequence of
random modulators is manipulated to achieve the compressive
measurements. It is apparent that information metasurface can
play the role of the dynamic modulators. The information
metasurface was developed from programmable metasurface
[60], [61], [62], [63], which consists of an array of control-
lable units (called as meta-atoms), where each meta-atom is
connected to an external control unit so that its resonance can
be damped by application of a bias voltage. Through applying
different voltages to the control circuit, the selected subsets
of the elements can be switched on to create the desirable
radiation patterns. As such, the information metasurface is
capable of producing arbitrary radiation patterns in a very
flexible and dynamic manner. In this way, spatial information
of an imaging domain can be encoded onto this set of radiation
patterns, or the measurements, which can be processed to
reconstruct the targets in the scene. The readers may refer to
[63] for the comprehensive review on the information meta-
surfaces. Apparently, this kind of system has the advantages
of simplified architecture and low hardware cost compared to
the phased-array techniques. Here, we would like to point out
that the alliance of the information metasurface with machine
learning techniques opens a new exciting door for designing
smarter systems with lower hardware costs.

We remark that a much shorter conference version of this
paper will appear in [64]. Our initial conference paper did
not address the detailed structure of the improved CSI-GAN
nor the termination strategy of CSI-GAN iteration process.
This paper will address these issues and add a comprehensive
discussion of how information metasurface is used in solving
EMIS.

II. FORMULATIONS OF THE EMIS PROBLEM
In this section, we detailly introduce the formulations describ-
ing the EMIS problem, while the formulations of the CSI
algorithm that are needed to integrate with our deep learning
framework are explained in APPENDIX in details. Some in-
verse imaging results of three CSI algorithms (CSI [13], ECSI
[14] and MCSI [15]) are also illustrated.

A. FORWARD SCATTERING PROBLEM
For convenience, we consider a two-dimensional (2D) EMIS
problem illuminated by plane waves with transverse-magnetic
(TM) polarization, as illustrated in Fig. 1. A nonmagnetic
scatterer with the relative permittivity εr (r) is located in a
domain of interest (DOI). Outside the scatterer is free space
with permittivity ε0 and permeability μ0. For measurements,
the DOI is illuminated successively by a total number of
Kin transmitting antennas. For each illumination, the scattered
electric fields are simultaneously recorded by a total number
of Ks receiving antennas. The transmitters and receivers are
alternately and uniformly arranged on a circle with radius
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FIGURE 1. Measurement setup for 2D EMIS, where the unknown
scatterers are located in a DOI (D). The transmitters and the receivers are
alternately arranged around the DOI.

R sharing the same center with the DOI. We remark that
R should be large enough so that the incident fields on the
scatterer by the transmitting antennas are approximately plane
waves.

Referring to the symbolic representation in [65], we use
E t (r) and E i(r) to represent the total and incident electric
fields at the field point r, respectively. In domain D (DOI),
the total electric field is calculated by:

E t (r)=E i(r)+iωμ0
∫

D g(r, r′)[−iωε0(εr (r′)−1)E t (r′)]dr′
, r ∈ D

(1)
In free space S outside the domain D, the scattered field

E s(r) radiated by scatterer can be written as:

E s(r) = iωμ0

∫
D

g(r, r′)[−iωε0(εr (r′) − 1)E t (r′)]dr′, r ∈ S

(2)
where g(r, r′) denotes the 2D Green’s function from source
point r’ to field point r in free space:

g(r, r′) = i

4
H (1)

0 (k0
∣∣r − r′∣∣) (3)

where H (1)
0 is the first-kind zeroth-order Hankel function. In

order to simplify (1) and (2), a normalized contrast current
density J (r′) can be defined:

J (r′) = χ (r′)E t (r′) (4)

where χ (r′) is the contrast defined by: χ (r′) = εr (r′) − 1.
Then (1) and (2) can be simplified as:

E t (r) = E i(r) + k2
0

∫
D

g(r, r′)J (r′)dr′, r ∈ D (5)

E s(r) = k2
0

∫
D

g(r, r′)J (r′)dr′, r ∈ S (6)

It is difficult to directly calculate the integral equations
in (5) and (6). We use the method of moment (MOM) to

transform these equations into discrete versions and refer to
the symbolic representation in [55] to rewrite the formulations
in their discrete versions. We assume that the numbers of
transmitters and receivers are both K. For the convenience
of centralized data processing, for each physical quantity, we
gather the data measured at the k-th (k = 1,2, …,K) radiation
into one complex matrix and provide their computational for-
mulas. Firstly, we discretize the domain D into N×N subunits,
and the contrast values at the centers of these N×N subunits
are represented by an N×N matrix, which is then flattened into
a column vector χ . Then, we denote the incident field vector
radiated by the k-th transmitter on χ as E

i
k ,whose dimension

is the same as χ . All of E i
k(k = 12, …,K) can be gathered into

an N2×K complex matrix Ei:

Ei = [E
i
1, E i

2, . . . , E i
K ] (7)

Similarly, we define an N2×K complex matrix Et to repre-
sent the total electrical field in domain D, whose definition is
the same as Ei but replacing the incident field in Ei with the
total electrical field. The normalized contrast current density
in domain D under all k-th (k = 12, …,K) radiations can then

be represented by an N2×K complex matrix J, which can be
calculated by

J = ξ · Et (8)

to give the discrete form of (4), where ξ means the diagonaliz-

able matrix of χ . The total electric field Et can be calculated
by

Et = Ei + GD · J (9)

to give the discrete form of (5), where GD is an N2×N2

complex matrix whose definition is the same to [55]:

GD(n, n′) = ik0πa

2
J1(k0a)H (1)

0 (k0 |rn − rn′ |), n �= n′ (10)

GD(n, n′) = ik0πa

2
H (1)

1 (k0a) − 1, n = n′ (11)

Here, a = (s/π )1/2, and s is the area of one subunit, J1(∗)
donates the Bessel function of the first order, H (1)

0 and H (1)
1

donate the zeroth and the first orders of the Hankel function
of the first kind, respectively. Physically, GD(n, n′) means
the propagation coefficient from the n-th subunit to the n’-th
subunit of domain D. Similarly, (6) can also be represented in
a discrete version:

Es = GS · J (12)

where Es is a K×K complex matrix, and each column repre-

sents the measured scattered fields under one radiation. GS is a
K×N2 complex matrix containing the propagation coefficient
from the n-th subunit of domain D to the m-th receiver:

GS (m, n) = ik0πa

2
J1(k0a)H (1)

0 (k0 |rn − rm|) (13)
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FIGURE 2. Testing results for four kinds of inverse scattering methods. The
color bar indicates the value of the contrast χ(r′ ).

Lastly, combining (8) and (9), together with (12), we can
get the two equations we need to define this EMIS, which are
termed as data equation and state equation:

Data equation : J = ξ · [Ei + GD · J]

State equation : Es = GS · J
(14)

B. NUMERICAL SIMULATIONS OF CSI ALGORITHMS
In the numerical test, the domain of interest D with reference
to Fig. 1 is set to be a 5.6λ0×5.6λ0 square (λ0 = 7.5 cm
is the working wavelength in vacuum), which is uniformly
discretized into 64 × 64 sub-squares for the simulations. 36
linearly TM-polarized transmitters are located uniformly over
the circle with a radius of 12λ0; and 36 co-polarized receivers
alternately distributed with the transmitters are used to si-
multaneously measure the electrical field scattered from the
probed scene. In the numerical forward problem calculations
with MoM, the objects are set to be lossless dielectrics with a
relative permittivity of εr = 2 and 2% noise has been added
for all simulations throughout this article.

We randomly choose an image from the MNIST data set
[66] and binarize it as the imaging object in the domain
of interest D. Four kinds of inverse scattering methods (BP,
CSI, ECSI and MCSI) are numerically tested to recover the
permittivity-distribution of the imaging object. The testing
results are demonstrated in Fig. 2. It can be found that all four
inverse scattering methods fail to produce a legible image with
sharp edge and complete topological structure.

III. THE CSI-GAN METHOD
In this section, we will introduce the methods of the proposed
CSI-GAN in detail. First, the overall structure of CSI-GAN
would be illustrated and detailly explained. Then, the design
strategy for the loss function of GAN part would be inter-
preted. Last, the tricks of the training process of CSI-GAN

would be demonstrated for a stable convergence. The defini-
tion of all relevant symbols appeared in the CSI iterations,

such as χn, ξn, Jn, gn and pn, can be found in the Appendix
section.

A. OVERALL STRUCTURE OF CSI-GAN
The schematic diagram of the proposed CSI-GAN in the n-th
iteration is shown in Fig. 3. At the beginning (n=1), we exe-
cute the classic CSI method [13] for 100 iterations to obtain
the initial values of the normalized contrast current density

J1, the contrast ξ1, the gradient g0 and the Polak-Ribière

conjugate gradient search direction p0. Because ξn is the di-
agonalizable matrix of the contrast vector χn, and the contrast
image is the two-dimensional form of χn, in the following
paragraphs we define a bold symbol “ χn ” to represent the

contrast image corresponding to χn or ξn.
The image of χ1 (represented as χ1) which is directedly

initialized by CSI method is blurry in most cases because of
the strong nonlinearity and ill-posedness of EMIS. In other
words, the restriction imposed on χ1 is not enough to let it
converge to a high-resolution solution. Inspired by the fact that
most of the images in real word own semantic information, in
other words, they have regular shapes and could be recognized
by people, thus we introduce a GAN to continually add topo-
logical constraint in the update process of the contrast image.

The schematic diagram of GAN is illustrated in Fig. 4. In
the n-th iteration, the generator (Gen.) of GAN receives the
image of χn+1 (represented as χn+1) from CSI, optimizes it
towards the direction of adding more topological and semantic
information, and outputs a modified image χR

n+1. Then χn+1

would be replaced by χR
n+1 in the next optimization iteration

of CSI to help it jump out of the local optima and converge to
the correct image.

The abstract structure diagram of CSI-GAN displayed in
Fig. 3 is shown in Fig. 4. As we can see, after the contrast im-
age is modified by GAN (χn = χR

n ), the CSI iteration is only
executed once to update the normalized contrast current den-

sity (Jn → Jn+1), which is not enough to make Jn+1 match

with χn from the angle of objective function F (Jn+1, ξn)
and will bring difficulty to the convergence of CSI-GAN .
In order to make the convergence of CSI-GAN more stable,
we improve the CSI-GAN workflow, as illustrated in Fig. 6.
The improved workflow can be tackled in three steps. Firstly,

the normalized contrast current density Jn is input into GAN,
driving the training process of GAN before χn is modified by
GAN and replaced by χR

n .
Secondly, after χn is replaced by χR

n , we keep its value un-
changed while 50 iterations of the modified gradient method

[14] are continuously executed to update Jn alone (Jn → J
R

n )

to make χn and J
R

n match with each other:

JR
n = argmin

J

F (J, ζn) (15)
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FIGURE 3. The structure diagram of CSI-GAN in the n-th iteration.

FIGURE 4. The abstract schematic diagram of GAN in CSI-GAN.

FIGURE 5. The abstract structure diagram of CSI-GAN in the n-th iteration.

Thirdly, a classic CSI procedure initialized by JR
n and χn is

executed by 50 iterations to update the normalized contrast

current density (Jn → Jn+1) before it is input to the GAN

FIGURE 6. The improved structure diagram of CSI-GAN in the n-th
iteration.

module in the next iteration of CSI-GAN:

Jn+1 = argmin
J,ξ

F (J, ζ) (16)

Thus, the modified gradient iterations, CSI iterations and
topological inpainting by GAN are alternately executed in
the CSI-GAN pipeline. Meanwhile, all auxiliary variables can
flow smoothly in the pipeline.

B. DERAILED TRUCTURE OF GAN
As we know, GANs [32] are able to transform Gaussian noise
to target images, in other words, the output of GANs could
be totally different from the input. As we just want to revise
the contrast image ( χn ) using GAN, we wish that the out-
put of GAN (χR

n ) could share some common features with
its input image, rather than outputting a brand-new image.
So, the degree of freedom for GAN should be restricted to
some extents. Inspired by this reason, we introduce a special
GAN structure named as Cycle-GAN [67], which is widely
used in the unpaired image-to-image translation to solve the
mismatch problem between the input and output images, into
the structure design of GAN in CSI-GAN.

The structure of the generator in the proposed CSI-GAN
combined with Cycle-GAN is shown in Fig. 7, in which GR

χ

is the revised generator module responsible for the topological
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FIGURE 7. The structure of the generator in the proposed CSI-GAN
combined Cycle-GAN.

inpainting, and Gχ
R is the inverse generator coupled with GR

χ to
restore χR

n to χn, insuring that χR
n and χn share some common

topological features and restrict the freedom of GR
χ . DR is

the discriminator to judge to which extent that χR
n shares the

same topological features with the training dataset consisting
of congeneric scatterers. The loss function of this Cycle-GAN
structure will be provided in the next section.

C. LOSS FUNCTION OF GAN
For the design of CSI-GAN, we refer the error function of
MSCI [15], which can be described as:

FMCSI (J, ξ) = [FS (J) + FD(J, ξ)] · FR(ξ) (17)

where FR(ξ ) is a topological regularization item indicating
the flatness level of image edge. In the loss function of CSI-

GAN, we replace FR(ξ ) in (17) with a discriminator error and
change the multiplicative regularization to the additive one.
As a result, the loss functions of GR

χ and Gχ
R in Fig. 7 can be

written as:

Loss_GR
χ = a1 · FD

(
Jn, GR

χ

(
χn

))
+ a2 · CL1(χn) + a3 · CL2(χR

n )

− a4 · DR

(
GR

χ

(
χn

))
(18)

Loss_Gχ
R = a2 · CL1(χn) + a3 · CL2(χR

n ) (19)

where a1 to a4 are fixed parameters, while CL1(χn) and
CL2(χR

n ) are cycle consistency losses represented as:

CL1(χn) =
∥∥∥χn − Gχ

R

(
GR

χ

(
χn

))∥∥∥
1

(20)

CL2(χR
n ) =

∥∥∥χR
n − GR

χ

(
Gχ

R

(
χR

n

))∥∥∥
1

(21)

in which ‖∗‖1 represents the L1-norm.

For the loss function of discriminator DR, we use the loss
function of WGAN [68] to simulate the calculation of Wasser-
stein distance between the generated images and real images:

Loss_DR = E
x̃∼Pg

[D(x̃)] − E
x∼Pt

[D(x)]

+λ E
x̂∼Px̂

[(‖∇x̂D(x̂)‖2 − 1)2]
(22)

where Pg and Pt represent the distributions of the generated
images from GR

χ (fake samples) and real scatterer images (real
samples) in the training dataset, respectively.

D. TRAINING PROCESS OF GAN
Similar to [56], we train the GAN in the CSI-GAN by two
sequential stages: offline training and online optimization. In
the offline training process, we pre-train the generator alone
using paired images with randomly smudged images by gaus-
sian noise as input, and the corresponding raw images selected
from the training dataset as the output to make it have the
preliminary inpainting ability. In other words, the generator
is pre-trained as a denoising network. However, a denoising
mapping is now powerful enough to modify the contrast im-
age in CSI iterations because it lacks the prior knowledge
to guide the mapping from estimated contrast images to real
ones in CSI iterations. Thus, in the online optimization pro-
cess, we further train the revised generator GR

χ with the back
propagation gradients from the loss function (18) which has a
physically-guided error term FD(∗) to instruct GR

χ in fitting the
modified mapping we want. It must be noted that for different
testing cases, the offline training process is executed ahead (no
need to repeat) but the online optimization process needs to
be restarted. Different testing cases do not share the network
parameters of GAN in their online optimization processes. In
other words, the GAN is a specialized image-corrector for
each testing case and its network parameters are dynamically
adapted in a testing case.

One of the most important things for GAN’s training pro-
cess in online optimization stage is to ensure that the generator
is fully trained while preventing the discriminator from falling
into overfitting. In the training process of discriminator, there
may encounter a problem that fake samples generated from
the revised generator GR

χ are much less than the real samples
from the training dataset, making the discriminator easily
trap into overfitting and cause mode collapse. One way to
relieve this problem is increasing the diversity of the fake
samples. We use GR

χ (χn), GR
χ (χR

n ) and their weighted means
with random weighting coefficients as the whole batch of fake
samples. Meanwhile, after the CSI-GAN procedure begins, in
the n-th iteration, the GAN will be trained with 10 iterations
before it is used to modify the contrast image. Another way
is restricting the learning progress of discriminator. In one
training iteration of GAN, the generator will be trained 3 times
after the discriminator is trained once.

Some hyper-parameters need to be carefully designed for
stable convergence. We choose the Resnet structure [69] with
34 layers and 4 layers as the generator and discriminator
networks, respectively. For the fixed parameters in (18) and
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FIGURE 8. The imaging results of χn+1, χR
n+1 and χn+2 in the n-th

optimization iteration of CSI-GAN for the target scatterer in Fig. 2.

(19), the values are taken as follows:

30 ≤ a1 ≤ 100, a2 = a3 = 10, a4 = 1 (23)

The whole CSI-GAN pipeline is run on the Pytorch deep-
learning platform including the modified gradient method
iterations and CSI iterations to make full use of the parallel
computing capability of the graphics processing unit (GPU).
In other words, the modified gradient and CSI methods are
integrated in the whole deep learning pipeline as a part of
the deep neural network. The GPU device we use is NVIDIA
RXT 3090. In our testing cases, the run time for one iteration
of CSI-GAN including training the GAN is about 6s.

IV. TESTING RESULTS OF CSI-GAN
The settings of parameters for simulations are the same as
those of Fig. 2. The image of the scatterer is chosen from the
MNIST dataset of handwritten digits. We use 6000 images
from MNIST as the training dataset for the GAN in CSI-
GAN to learn the topological features of the potential target
scatterer. It should be guaranteed that GAN will not see the
exact image of the target scatterer. So, other 1000 images from
MNIST are made as the testing dataset, from which a sample
image is randomly chosen and then binarized to be used as the
ground truth contrast image of the target scatterer. It must be
noted that the contrast images in the training dataset need not
to be numerically simulated to get their scattering fields.

When given a target scatterer, we get the corresponding

scattered field Es and put it into the CSI method to obtain an
initial normalized contrast current density and other auxiliary
variables to launch our CSI-GAN procedure. As the process
goes on, the output of the generator would gradually converge
to the correct image of the target scatterer. The imaging results
of χn+1, χR

n+1 and χn+2 in the n-th optimization iterations of
CSI-GAN for the target scatterer in Fig. 2 are shown in Fig. 8.
As we can see, the GAN could help the integrated CSI method
jump out of local optimum and repair the image with more
topological features. The imaging result of the 36-th iteration

FIGURE 9. The graph of data error FD(Jn+1, ξn+2 ) in the n-th iteration.

FIGURE 10. The quantitative analysis of the final imaging result for the
target scatterer in Fig. 2. (a) The original image of the target scatterer. (b)
The imaging result of the CSI method. (c) The imaging result of the
proposed CSI-GAN. (d) The post-processing image by binarizing the
imaging result of CSI-GAN. (e) The pixel-level comparison between (a) and
(d). (f) The most similar image to (a) in the training dataset.

(bottom right corner in Fig. 8) is already very similar to the

target image. The graph of data error function FD(Jn+1, ξn+2)
in the n-th iteration is shown in Fig. 9. The initial data error
at the 0-th iteration in Fig. 9 is the one for the imaging result
of the classical CSI method and is proved by experiment that
it could not be further improved by the CSI method itself or
traps in a local optimum. However, the descending curve of
data error in Fig. 9 indicates that the proposed CSI-GAN could
haul it out of the quagmire and steadily converge to an ideal
physical solution for this inverse scattering problem.

We further conduct a quantitative analysis of the final
imaging result for the target scatterer (original image) in
Fig. 2 and the results are presented in Fig. 10. The imag-
ing result generated by CSI-GAN (Fig. 10(c)) is very close
to the original image with a mean square error (MSE) of
0.0078 and the structural similarity index measure (SSIM)
of 0.8775. In order to fully display the recovering capacity
of topological details, we plot Fig. 10(d) by binarizing the
image in Fig. 10(c) and further improve the SSIM to 0.9586.
In Fig. 10(e), the defect and surplus pixels in Fig. 10(d)
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FIGURE 11. The comparison results of the inverse scattering imaging
between CSI and the proposed CSI-GAN.

compared with the original image are marked in green and
red respectively, showing that 95.31% pixels in Fig. 10(d)
are identical to those of the original image, which confirms
the powerful precision for the detail-recovery ability of our
proposed CSI-GAN. Fig. 10(f) shows the most similar sam-
ple (under the criterion of SSIM) with the original image in
the training dataset, whose topological posture is distinctly
different from the original image. This fact indicates the
effectiveness of the physical constraint put on our CSI-GAN,
which can guide the output image to converge to the exact im-
age of the target scatterer rather than a similar image existing
in the MNIST dataset.

Other testing results are shown in Fig. 11. The imaging
results of CSI methods are also given for comparison. As we
can see in Fig. 11, the proposed CSI-GAN could generate
high-resolution imaging results very close to the ground truth
with plenty of semantic features, while the CSI method can
only converge to blurry and illegible results.

Next, we will discuss the termination strategy of CSI-GAN
iteration process. There are mainly two kinds of cases that
may occur in the implementation of CSI-GAN. One is that
CSI-GAN continually traps in and jumps out of the local
optimum and finally converges to an optimal result, as Fig. 12
shows. Fig. 12 displays the graph of data error FD and several
local-optimum imaging results in the iteration process of CSI-
GAN. In this case, the CSI-GAN could be ended when the
data error FD drops to a preset threshold value. Another case
is show in Fig. 13 as an example. In this case, the CSI-GAN
rapidly converges to an optimal result at the 11-th iteration and

FIGURE 12. The graph of data error FD and several local-optimum imaging
results for the handwritten digit 4 in the iteration process of CSI-GAN.

FIGURE 13. The graph of data error FD and several maximin imaging
results for the handwritten digit 9 in the iteration process of CSI-GAN.

keeps the data error FD stabilized around the optimal value.
The difficulty for the judge of termination for this case is
that we could not foresee whether a better result will come
out in the subsequent iterations. In other words, we should
know whether the CSI-GAN procedure deserves to continue
to explore a potential better result when an ideal result is
rapidly obtained. Weighing the efficiency and effectiveness
together, our final termination strategy is firstly executing the
CSI-GAN by 100 iterations. If the optimal data error FD is
lower than a preset threshold, the CSI-GAN is ended and the
optimal result is outputted as the final result. Otherwise, if
the optimal data error FD does not meet the requirement, the
CSI-GAN will be executed continuously until an acceptable
result is obtained. The run time for one iteration of CSI-GAN
is about 6s.

V. INFORMATION-METASURFACE-ENABLED INVERSE
SCATTERING
It is noticed from the aforementioned discussions that the
EMIS requires the time-consuming multi-static multi-view
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measurements to achieve the acceptable results. However,
for most of practical applications, it becomes a challenging
issue for them due to the high-dimensional data or “data
crisis”. Fortunately, it is well known from the Johnson-
Lindenstrauss lemma [70] that the high-dimensional data, if
they have a structure representation, can be projected into a
low-dimensional feature space with nearly neglectable infor-
mation loss. That is to say, the essential information of the
high-dimensional data can be efficiently retrieved from the
remarkably reduced measurements. Given a sample x ∈ X,
where X is a cloud of Q points in an N-dimensional space,
there exists, at least, a projection operator H : y = H(x) such
that the M-dimensional projection has as small loss of intrinsic
information as possible compared to x, where M<<N. For
illustration, we here restrict ourselves into the case of Born
approximation [71]; however, the developed methodologies
can be generalized for more general cases in a straightforward
manner [63], [72], [73], [74]. Then, the operator H is linear,

and this problem can be represented as y = H · x + n, where
y ∈ CM is the M-length measurements, x ∈ CN denotes the
probed scene, and n is the measurement noise. Under the
Born approximation, the entry of measurement matrix (Hi j)
is simply proportional to the fields radiated by the transmitter
and receiver antennas at a given point in the scene r j : Hi j ∝
ET

i (r j ) · ER
i (r j ), where ET

i (r j ) and ER
i (r j ) represent the ra-

diation and receiving patterns. Note that a single sensor is
assumed for data acquisition, like the setting of computational
compressive imager [1]. Each row of the measurement matrix

H corresponds to a measurement mode, and hence the num-
ber of rows equals the number of measurements. Apparently,

the entries of H is determined by the illumination pattern of
information metasurface ET

i (r j ).

In the terminology of machine learning, the matrix H cor-
responds to the so-called embedding projection operator. We
here consider two popular projection operators widely used in
the area of machine learning, in particular, the random pro-
jection and principal component analysis (PCA) projection.

For the random projection, the entries of H are drawn from
independent random numbers. Note that the random approach
imposes no restrictions on the object to be reconstructed. The
PCA is a prior task-aware embedding technique, where each

row of H is trained over many training samples available.
Thus, when a set of prior knowledge on the scene under
investigation are available, PCA enables the design of effi-
cient measurement modes, reducing remarkably the number
of measurements.

Now, we provide a set of results to demonstrate the per-
formance of the above method [71]. To that end, a two-bit
information metasurface is considered here, which is com-
posed of 48 × 48 controllable digital meta-atoms, as shown in
Fig. 14(a). More detailed about the metasurface can be found
in [71]. In addition, the two-bit information metasurface is
trained to get the desired radiation patterns or measurement
modes over the MNIST dataset, a widely utilized hand-
writing dataset in the area of machine learning. Full-wave

FIGURE 14. Schematic diagrams of information metasurfaces. (a)-(b)
Schematic figure and geometrical parameters of the meta-atom for a
two-bit information metasurface, respectively. (c)-(d) The first 16 leading
PCA radiation patterns and the corresponding coding patterns of
information metasurface. .

FIGURE 15. The recovered images of nine digit-like objects of the
machine-learning imager trained with PCA (a) and random projection (b)
with varying numbers of measurements, where different noise levels of
0dB, 20dB and 30dB are considered.

simulation results of the PCA-based radiation patterns are
shown in Fig. 14(c), and the corresponding coding patterns
of the information metasurface are given in Fig. 14(d). These
figures illustrate that the information metasurface can be
trained by PCA, implying that the machine-learning-driven
information metasurface is able to generate the measure-
ment modes needed by PCA. Fig. 15(a) and (b) illustrate the
recovered images of nine digit-like objects of the machine-
learning imager trained with the random projection and PCA
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with varying numbers of measurements. Here, Fig. 15(a) and
(b) present the retrieved images from the PCA and random
projection respectively. In each method, the measurement
numbers are 10, 50, 100, 200, and 300 from the left to the
right. We also evaluate quantitatively the image qualities with
respect to the signal-to-noise ratio (SNR). We clearly observe
that the quality of image turns better with the increasing mea-
surements, and PCA behave better than the random projection,
especially in the low measurement cases.

To summarize, we can see from the above preliminary
results that the information metasurface driven by machine
learning techniques is able to produce the task-oriented mea-
surement modes, which are very relevant to the probed object,
in a very flexible and dynamic manner. In this way, the
number of measurements can be remarkably reduced for the
high-quality inversion, which is directly responsible for con-
siderably speeding up the data acquisition, and meanwhile
maintaining the very low complexity for the digital data pro-
cessing.

VI. CONCLUSION
In this work, we propose the framework of intelligent EMIS
by integrating deep learning techniques for efficient data
processing and information metasurface for adaptive data ac-
quisition into the entire EMIS’s pipeline, in order to address
the fundamental but important challenges arising from the
conventional EMIS’s strategies. Towards this goal, we firstly
propose an unsupervised EMIS framework, i.e., CSI-GAN,
which can be trained on the off-the-shelf dataset without
paired training samples, leading to the remarkably reduced
simulation time during the collection of training dataset. As
opposed to the supervised EMIS’s solutions relying on a large
amount of labeled training data, our CSI-GAN takes the CSI
with physical interpretations as the network’s backbone, and
explores the unsupervised deep learning technique for the
update of the contrast images. Moreover, the CSI-GAN is not
exclusionary with the supervised deep-learning-based inver-
sion schemes, and the inversion results can be used as the
initial solutions for the CSI-GAN to improve the convergence
procedure. Of course, compared with those end-to-end inverse
scattering deep learning networks trained by paired samples
whose imaging results can be directly obtained when given the
input electromagnetic data, our CSI-GAN needs several opti-
mization iterations before obtaining the final imaging results,
which is inferior to the former in computing overhead and
imaging speed. However, our CSI-GAN can be used as a very
ideal alternative method to achieve better inverse scattering
imaging results when paired training samples are missing or
difficult to obtain.

Furthermore, we propose the scheme of adaptive data ac-
quisition with the information metasurface in a cost-efficiency
way, remarkably reducing the measurement numbers and thus
speeding up the data acquisition but maintaining the recon-
struction quality. In the near future, the strategies to improve
the performance of the intelligent EMIS could be further

explored, for instance, to design more “smart” data acquisi-
tion schemes by combing the machine learning method with
the information metasurface (reinforcement-learning-driven
metasurface) to develop more specialized deep learning net-
works with more physically meaningful physical properties.
We expect that the presented strategy can open a new avenue
for the future intelligent EMIS by combining the information
measurface and the machine learning techniques.

APPENDIX
A. BACK-PROPAGATION METHOD
Back-propagation (BP) is a simple non-iterative method to
solve the EMIS problems and gets the estimate value of the
contrast, which is widely used as the initial value for the
iterative methods such as CSI. In this section, we provide the
concise version of BP written by matrix operations.

The two main steps are as follows:
1) Estimate the value of the normalized contrast current

density J :

J = GH
S · Es · γ (24)

where the superscript H means conjugate transpose, and
γ is a complex diagonal matrix with dimension K×K.
The value of γ is to minimize the quadratic cost of state
equation:

argmin
γ

∥∥∥Es − GS ·
[
GH

S · Es · γ
]∥∥∥2

(25)

The minimization problem (25) has an analytical solu-
tion:

γ =
sum

[
Es � Ẽs∗, 1

]
sum

[
Ẽs � Ẽs∗, 1

] (26)

where Ẽs = GS · GH
S · Es. The function sum[A,1]

means to calculate the summation of each column in
matrix A and form a row vector. The symbol � means
element-wise multiplication, and superscript “∗” means
element-wise conjugate. The vector division in (26) is
element-wise division.

2) Calculate Et using (9) and get the estimation of the
contrast χ by means of (8):

χ = sum[J � Et∗, 2]

sum[Et � Et∗, 2]
(27)

where sum[A,2] means to calculate the summation of
each row in matrix A and form a column vector. The
vector division in (27) is element-wise division.

B. CONTRAST SOURCE INVERSION METHOD
The classical CSI algorithm [13] plays an important role in our
physics-informed unsupervised deep learning frame-work. It
is used to extract the physical knowledge and directly in-
tegrated in the framework. Here, the classic CSI algorithm
written as matrix operations is provided.
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We define two error functions named as the data error func-
tion FD(J, ξ) and the state error function FS (J), which indicate
the mismatches in the data equation and the state equation
respectively:

FD(J, ξ) =

∥∥∥ξ · Ei + ξ · GD · J − J
∥∥∥2

∥∥∥ξ · Ei
∥∥∥2 (28)

FS (J) =

∥∥∥Es − GS · J
∥∥∥2

∥∥∥Es
∥∥∥2 (29)

The CSI method aims to minimize the sum of data error and
state error functions by iteratively optimizing the normalized

contrast current density matrix J and the contrast matrix ξ:

argmin
J,ζ

F (J, ζ) = FS (J) + FD(J, ζ) (30)

The classic CSI algorithm firstly updates J using the Polak-

Ribiére conjugate gradient method, and then updates ξ by
orderly calculating (9) and (27). Before giving the details of
CSI, we define some auxiliary matrices and values for more
succinct expression of CSI formulations:

A1 = GS, B1 = Es

A2 = [I − ξ · GD], B2 = ξ · Ei

c1 = 1

/∥∥∥Es
∥∥∥2

, c2 = 1

/∥∥∥ξ · Ei
∥∥∥2

(31)

where I represents the identity matrix. The value of ξ remains

constant in one iterative update of J, so for the updating

process of J, the objective function F (J, ξ) in (30) can be

shortened to F (J):

argmin
J

F (J) = c1

∥∥∥B1 − A1 · J
∥∥∥2 + c2

∥∥∥B2 − A2 · J
∥∥∥2

(32)

The main steps of the classical CSI algorithm are as fol-
lows.

1) Use the BP method to calculate the initial values of J

and ξ, represented as J0 and ξ0 respectively.

2) For the n-th iteration (n≥0), put Jn and ξn into (31) to

update the auxiliary matrices and values A2, B2, and c2.

ξn is the diagonalizable matrix of the contrast vector χn.
3) Calculate the gradient matrix gn of the objective func-

tion F (J) with respect to J = Jn:

gn = c1AH
1 · (A1 · Jn − B1) + c2AH

2 · (A2 · Jn − B2)
(33)

4) Calculate the Polak-Ribière conjugate gradient search
direction pn:

pn =
{

gn, n = 0

gn + pn−1 · βn, n ≥ 1
(34)

where βn is the diagonalizable matrix of βn:

βn =
Re

[
sum

[
gn � (gn − gn−1)

∗
, 1

]]
sum

[
gn � g∗

n, 1
] (35)

In (35), the function Re[∗] means taking the real value
part of a complex value vector or matrix, and the vector
division is element-wise operator.

5) Do one-dimensional search at the direction pn to mini-
mize the objective function:

argmin
αn

F
(
Jn+1

)
= F

(
Jn + pn · αn

)
(36)

where αn is the diagonalizable matrix of the row vector
αn, who has analytical solution:

αn = −
sum

[
gn � p

∗
n, 1

]
⎛⎝ c1 · sum

[
(A1 · pn) � (A1 · pn)

∗
, 1

]
+

c2 · sum
[
(A2 · pn) � (A2 · pn)

∗
, 1

] ⎞⎠
(37)

The vector division is element-wise operator.
1) Update the normalized contrast current density:

Jn+1 = Jn + pn · αn (38)

2) Update the contrast:

χn+1 = sum[Jn+1 � Et∗, 2]

sum[Et � Et∗, 2]
(39)

3) Execute Steps 2-7 repeatedly, until reaching the max-
imum number of iterations or getting the value of

objective function F (Jn, ξn) less than predetermined
threshold.
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